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1 Outline

Our goal today is to reduce the main theorem of [4] to a theorem on lifting mod p cohomology
classes. These are as follows.

Main Theorem. Let X be a locally symmetric space for GLn /Q. Let ψ be a system of Hecke
eigenvalues in Hi(X, Fp). Then there is a continuous semisimple Galois representation

ρψ : Gal(F/F)→ GLn(Fp)

whose Frobenius eigenvalues match the Hecke eigenvalues of ψ.

Lifting Theorem. Let X′ be a Shimura variety of Hodge type, and let ψ be a system of eigenvalues
in Hi

c(X′, Fp). Then there exists a cuspidal Hecke eigenform f such that the Hecke eigenvalues of
f are congruent to ψ mod p.

The point is that it’s known how to associate Galois representations to cuspidal Hecke eigen-
forms, so to get a Galois representation from a Hecke eigensystem in Hi(X, Fp) we need only
produce a corresponding eigensystem in Hi(X′, Fp). Then the second theorem allows us to lift to
a cuspidal Hecke eigenform, to which we can associate a Galois representation, and then reduce
mod p to get our desired Galois representation.

The key tool we’ll use to transfer cohomology from X to X′ is Borel-Serre compactification.
More precisely, we’ll take X′ = XG to be a locally symmetric space for G = Sp2n, i.e. a Siegel
modular variety. Then M = GLn is the Levi subgroup of a maximal parabolic subgroup P in G,
and the corresponding locally symmetric spaces fit into the following diagram

XP
open //

torus bundle
��

∂XBS
G

bound’ry// XBS
G XGoo

XM

section

UU

We’ll use these maps to get maps on cohomology compatible with Hecke actions, which will allow
us to transport around Hecke eigensystems.
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2 Borel-Serre Compactification

First let’s discuss Borel-Serre compactification, which is a procedure that gives a compactification
of a locally symmetric space for a reductive group as a manifold with corners. Our discussion
follows [3].

Fix G/Q a connected reductive algebraic group, K ⊂ G(R) a maximal compact subgroup, and
Γ ⊂ G(Q) an arithmetic subgroup. A nice illustrative example to keep in mind is G = SL2, with
K = SO2(R) ⊂ SL2(R) and Γ ⊂ SL2 Q a congruence subgroup.

The center of G is an algebraic torus over Q, which contains a greatest Q-split subtorus AG.
Define

0G =
⋂
χ

ker(χ2)

where χ : G → Gm runs over rational characters of G. This is again a connected reductive group
over Q, and the group of real points of G decomposes as

G(R) = 0G(R)× AG(R)+

(where the + superscript denotes the topological identity component).
Our symmetric space for G is

D = G(R)/K · AG(R)+

and our locally symmetric space is

X = Γ\D = Γ\G(R)/K · AG(R)+.

For convenience, we can actually always assume AG is trivial; this doesn’t affect the formation
of our locally symmetric space because G(R)/K · AG(R)+ = 0G(R)/K (and we can replace G by
0G).

In our example of SL2, the center is {±1} so contains no non-trivial torus, and our symmetric
spaces are

D = SL2(R)/ SO2(R) = H and X = Γ\ SL2(R)/ SO2(R),

the classical upper half-plane and modular curves.
The Borel-Serre compactification of X is got by adjoining boundary components to D to get

a “partial compactification”, and then quotienting by Γ to get a true compactification of X. The
boundary components we add to D correspond to parabolic subgroups of G.

Let P be a proper rational parabolic subgroup of G. Then we have a Levi decomposition

P = UP o LP

where UP is the unipotent radical of P and LP is a Levi subgroup. As above we have LP(R) =
0LP(R)× AP(R)+ where AP is the largest Q-split torus in the center of LP. Thus

P(R) = UP(R) · 0LP(R) · AP(R)+.

From the Iwasawa decomposition of G one can see that P acts transitively on D, which is to
say

D = G(R)/K = P(R)/KP

(where KP = K ∩ P(R)). Now we can define a right action of AP(R)+ on D by (g · KP)a = ga · KP
(g ∈ P(R) and a ∈ AP(R)+), which is well defined because AP(R)+ commutes with KP ⊂ 0L(R).
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Define the Borel-Serre boundary component associated to P to be eP = D/AP(R)+, and the Borel-
Serre compactification DBS to be (as a set) the disjoint union of D and eP for each proper rational
parabolic P.

Topologising DBS is a complicated affair, which I won’t discuss in detail.

Theorem (Borel-Serre). There is a topology on DBS (the Satake topology) such that the action of G(Q) on
D extends to an action by homeomorphisms on DBS.

But there is the following nice intuition. The orbits of AP(R)+ acting on D are totally geodesic
submanifolds, and the boundary component eP = D/AP(R)+ is attached as the set of limit points
of these orbits.

Let’s return again to the case of SL2. It has only one parabolic subgroup up to conjugacy,
namely the upper-triangular matrices

P =

{(
a b
0 a−1

)}
⊂ SL2

with Levi decomposition P = UP o LP where

UP =

{(
1 b
0 1

)}
and LP = AP =

{(
a 0
0 a−1

)}
.

Note that here the whole Levi is a Q-split torus. Our symmetric space, the upper half-plane, is
given by

P/KP
∼−→ H(

y1/2 xy−1/2

0 y−1/2

)
7→
(

y1/2 xy−1/2

0 y−1/2

)
i = x + yi

The action of AP is given by

(x + yi)
(

a 0
0 a−1

)
=

(
y1/2 xy−1/2

0 y−1/2

)(
a 0
0 a−1

)
i =

(
ay1/2 a−1xy−1/2

0 a−1y−1/2

)
i = x + a2yi,

whose orbits are vetrtical half-lines. Thus D/AP is a line, which we glue to the top of the upper
half-plane. The same procedure is performed at each cusp, so that DBS is the upper half-plane
together with countably many lines, one glued at each cusp. Compare this to the usual (Baily-
Borel) compactification, which glues a single point at each cusp. (Here and later I’m abusing the
word “cusp” a bit, but you know what I mean).

Back to the general case. The Borel-Serre compactification of X = Γ\D is then

XBS = Γ\DBS

and the quotients YP of eP are its boundary components. The action of Γ can identify boundary
components and identify points within boundary components, but is essentially well behaved on
the boundary. To be precise, setting ΓP = Γ ∩ P ⊂ Γ, the covering

ΓP\DBS → Γ\DBS

is in fact one-to-one near the boundary component eP, so that points of eP are identified by Γ only
as much as by Γp. The resulting XBS is a compact manifold with corners.
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Theorem (Borel-Serre). XBS is compact, and the inclusion X → XBS is a homotopy equivalence. XBS

is stratified with finitely many strata YP corresponding to the Γ-conjugacy classes of rational parabolic
subgroups P ⊂ G. Each YP has a neighborhood V diffeomorphic to YP × (0, ∞]r (where r is the rank of AP)
whose faces YP × (0, ∞)s are the intersections YQ ∩V for some Q ⊃ P.

Note that the boundary components

YP = ΓP\P(R)/KP · AP(R)+

are locally symmetric spaces for the parabolic subgroups of G, and that larger parabolics produce
higher dimensional boundary components. In particular, the locally symmetric space of a maximal
parabolic P ⊂ G is an open subset of the boundary of the Borel-Serre compactification of X.

Returning to our example: we saw that DBS is the upper half-plane with a line glued to each
cusp. The quotient by a congruence subgroup Γ identifies the lines glued at Γ-equivalent cusps,
and (as is clear in the case of the line at infinity) rolls each line into a circle. The resulting XBS is a
modular curve compactified by adding finitely many boundary circles. Compare this to the usual
(Baily-Borel) compactification, where the circle are replaced by points.

3 Reduction to Liftability

Equipped with the Borel-Serre compactification, let’s now see how to reduce the main theorem to
lifting mod p cohomology. We’ll only discuss the case F = Q; some modifications are necessary
for F totally real or CM, but the main ideas are identical.

Set G = Sp2n /Q. This contains M = GLn /Q via

GLn → Sp2n

M 7→
(

M 0
0 t M−1

)
as the Levi subgroup of a maximal parabolic P ⊂ G. Taking KM ⊂ M(A f ) compact open, K∞ ⊂
M(R) maximal compact, and R+ ⊂ M(R) the positive scalar matrices, we have a corresponding
locally symmetric space

XM = M(Q)\[(M(R)/R+K∞)×M(A f )/KM]

and similarly XP for P and XG for G. This is not the same notion of locally symmetric space as
the one used in the previous section; actually the locally symmetric space here is a disjoint union
of finitely many locally symmetric spaces in the previous sense, so the departure is not dramatic,
and we will not dwell on showing precisely the same facts in this context.

The Main Theorem seeks to associate a Galois representation to a system of Hecke eigenvalues
in Hi(XM, Fp); the Lifting Theorem associates a Galois representation to a system of Hecke eigen-
values in Hi(XG, Fp). Recall our idea is to transfer Hecke eigenvalues between these different
cohomology groups.

To do this we’ll need to investigate the relations between XM, XP, and XG, and in particular
their cohomology. We’ll need some compatibility in how we form these spaces; if KG ⊂ G(A f ) is
the compact open defining XG, then we should take KP = KG ∩ P(A f ) to be the compact open for
XP, and take KM = KP ∩M(A f ) to be the compact open for XM (we also assume that KM agrees
with the image of KP under the Levi quotient).
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Let XBS
G be the Borel-Serre compactification, and ∂XBS

G = XBS
G \XG the boundary. From our

above discussion of the construction, we get an open embedding

XP ↪→ ∂XBS
G .

There is also a natural long exact sequence associated to a manifold with corners:

· · · → Hi
c(XG, Z/pm)→ Hi(XBS

G , Z/pm)→ Hi(∂XBS
G , Z/pm)→ · · · ,

where we can replace XBS
G by XG in the middle term because the inclusion XG ↪→ XBS

G is a
homotopy equivalence. Combining all these facts we obtain natural maps

Hi
c(XP, Z/pm)→ Hi(∂XG, Z/pm)→ Hi(XP, Z/pm).

Regarding XM, we have the following maps.

Lemma. The quotient P→ M induces a natural (S1)k-bundle

XP → XM,

where k is the dimension of the unipotent radical of P. In addition, the inclusion M ⊂ P induces embedding
XM ↪→ XP which is a section of the torus bundle.

We can use this to induce maps in both directions between the cohomology of XM and XP.
Putting all these facts together results in the following commutative diagram (of Zp-modules).

Hi(∂XBS
G , Z/pm)

((
Hi

c(XP, Z/pm)

66

// Hi(XP, Z/pm)

��
Hi

c(XM, Z/pm)

OO

// Hi(XM, Z/pm)

Now let’s examine the action of Hecke algebras. A detail we skipped over before is that we
should fix a finite set S of places of Q containing p, and we want our compact opens in G, P, M
to have the form KG = KG,SKS

G where KG,S ⊂ G(AS, f ) and KS
G ⊂ G(AS

f ) (and similarly for P and
M). Define

TG = Zp[KS
G\G(AS

f )/KS
G]

and similarly TP, TM.
Recall also that we assumed KG to be sufficiently small. This implies that all congruence

subgroups are torsion free, so that the quotients defining the Borel-Serre compactification are by
discontinuous group actions. This shows that the Hecke algebra TG acts on the cohomology of
the boundary.

TG 7→ EndZ/pm(Hi(∂XBS
G , Z/pm))

The Hecke algebras TP and TM also act on the (usual and compactly supported) cohomology of
their respective locally symmetric spaces, giving

TP → HomZ/pm(Hi
c(XP, Z/m), Hi(XP, Z/pm))
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and similarly for TM. Note that these maps do not depend on whether we let the Hecke algebra
act on Hi or Hi

c. For M, define also the interior cohomology

Hi
! (XM, Z/pm) = im(Hi

c(XP, Z/m)→ Hi(XP, Z/pm)).

Then TM acts also on endomorphisms of the interior cohomology groups.
The maps between cohomology of our spaces are compatible with Hecke actions in the follow-

ing sense.

Lemma. The following diagram (of Zp-modules) is commutative.

TG //

restriction

��

EndZ/pm(Hi(∂XBS
G , Z/pm))

��
TP //

integration along
unipotent fibers

��

HomZ/pm(Hi
c(XP, Z/m), Hi(XP, Z/pm))

��
TM // HomZ/pm(Hi

c(XM, Z/m), Hi(XM, Z/pm))

Corollary. Let TG be the image of TG in EndZ/pm(Hi(∂XBS
G , Z/pm)) and TM the image of TM in

EndZ/pm(Hi
! (XM, Z/pm)). Then the following diagram (of Zp-algebras) is commutative.

TG //

Satake
transform

��

TG

��
TM // TM

This is essentially the tool that allows us to push around Hecke eigensystems.
To be precise about the Galois representations we get out, we need to make our Hecke algebras

and the maps between them more explicit. We have a decomposition into local factors

TG =
⊗
v/∈S

TG,v

where
TG,v = Zp[KG,v\G(Qv)/KG,v]

and similarly for TP and TM.

Lemma 1. The Satake transform TG → TM is given on each local factor by

TG,v[q
1/2
v ]

Satake transform // TM,v[q1/2
v ]

Zp[q1/2
v ][X±1

1 , . . . , X±1
n ]Snn(Z/2)n // Zp[q1/2

v ][X±1
1 , . . . , X±1

n ]Sn

Xi
� // q(n+1)/2

v Xi

where qv is the size of the residue field at v.
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Rather than dealing directly with representations, the paper uses the language of determinants,
which are a pseudo-representation type thing. Precisely, a determinant of a group G with values in
a ring R is a multiplicative R-polynomial map D : R[G] → R. This induces a map D : R[X][G] →
R[X], and D(1− Xg) ∈ R[X] is called the characteristic polynomial of g.

If we have a representation k[G]→ End(V) of G on a k-vector space, then

k[G]→ End(V)
det−→ k

is a determinant in the above sense, whose characteristic polynomials are the characteristic poly-
nomials of the representation. The key fact is that if k is an algebraically closed field, then every
determinant of G with values in k is associated to a semisimple representation of G on a k-vector
space. Furthermore, if we have a determinant with values in R and a map R → k we can tensor
with k to get a determinant with values in k, i.e. a representation.

In the present situation: we’ll talk about determinants of GQ,S with values in Hecke alge-
bras. This is essentially the same as attaching representations to Hecke eigensystems, because an
eigensystem is a map T→ k, from which we can produce a representation in the above way.

Corollary. There is a nilpotent ideal I ⊂ TM and a continuous determinant D of GQ,S with values in
TM/I such that

D(1− X Frobv) = P̃v(X).

How to show this: the commuting diagram of Hecke algebras allows us to produce a de-
terminant of TM (i.e. a rep from Hi

! (XM, Z/pm)) from a determinant of TG (i.e. a rep from
Hi(∂XBS

G , Z/pm)). Then from the long exact sequence

· · · → Hi(XG, Z/pm)→ Hi(∂XBS
G , Z/pm)→ Hi+1

c (XG, Z/pm)→ · · ·

it suffices to produce similar determinants with values in

im(TG → End(Hi(XG, Z/pm))) and im(TG → End(Hi
c(XG, Z/pm))),

i.e. representations from Hi(XG, Z/pm). Finally, the explicit map on Hecke algebras tells us the
form the characteristic polynomial will take if we start with a Galois rep associated to a Hecke
eigensystem in Hi(XG, Z/pm).

This last corollary essentially shows the existence of a Galois representation associated to any
Hecke eigensystem in the cohomology of XM; but it’s not quite the right one yet (e.g. in terms
of characteristic polynomial). If the representation we’re looking for is ρ, then the one we have is
something like ρ⊕ ρ∨ ⊕ 1. With some more work we can extract the correct Galois representation;
i.e., produce a determinant of GF,S with values in TM/I (for some nilpotent I) such that

D(1− X Frobv) = Pv(X).
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